

The International Thorium Molten-Salt Reactor Developmental activities

Dr. Kazuo FURUKAWA

(QYT00127@nifty.ne.jp)

http://www.ithems.jp/e

http://msr21.fc2web.com/English.htm

*International Thorium Energy & Molten-Salt Technology Inc.

(IThEMS, Chairman)

**International Thorium Molten-Salt Forum (ITHMSF, President)
October, 2010

- Global Major Technology: 100-200 years life
- Based on the SYSTEM PRINCIPLE SYSTEM is "nuclear fuel-cycle system" (not "nuclear power reactor")
- "Simplicity" ----- reliable ---- "ECONOMY"
- Flexible System:
 better is better (best is not best)
 ----- familiar technology


```
1944: Chicago University (Eugene WIGNER)
```

Reactor: chem. Engineering system working medium "LIQUID"

(might be "molten fluoride salts")

1950- 1980: ORNL (Alvin WEINBERG, MacPHERSON,)

Molten-Salt Reactor PROGRAM

1950- 1976: CRNL (W.B. LEWIS)

Accelerator Breeding: SPALLATOR

1980: JAERI (K. FURUKAWA, K. TSYKADA, Y. NAKAHARA)

Accelerator Molten-salt Breeder (AMSB)

1985: FUJI (fuel self-sustaining simple MSR station)

1988——: THORIMS-NES

(Thorium Molten-Salt Nuclear Energy Synergetic System)

"Brief HISTORY of Molten-Salt Reactor DEVELOPMENT"

- 1947—76: Oak Ridge NL: MSR-Program [MS Breeder Reac.(MSBR) development]
- 1965-69: Experimental-Reactor: MSRE operation (total :26,076 hrs, no accident) at ORNL
- 1968-80: <u>USA</u>: Molten-Salt Group (EBASCO, etc.: Reicle, deBoisblanc)
 approached to JAPAN for MSBR develop. (Kamei, Nishibori)
- 1972-83: <u>EdF [Elec. de France]-CEA MSBR program (Bienvenu, Lecocq)</u> approached to KF from 1981
- 1980.10 KF etc. invented <u>AMSB</u> (<u>Accelerator Molten-Salt Breeder</u>).
- 1981 Academic Assoc."Thorium-Energy Research"(:Profs. Kaya, Husimi, Nishibori, Saito etc)
 Parliament Group for Th Energy in Govern. Political.Party(100members)
- 1982.5. The 1st MSR Meeting at EUCHEM-Conf., La Gaillarde, France
- 1982 USSR Journal "Atomic Energy in Abroad" translated the KF paper of AMSB.
- 1983.6 <u>USSR-Kurchatov Inst</u>. (KI) (Direc. Acad. Alexandrov, Dr. Novikov) proposed MSR-Cooperation Development to KF.
- 1985.8 KF etc.: invented the fuel-self-sustainable simple small MSR: FUJI

- 1986.3 <u>USSR-KI</u> decided *MSR Construc*. (leader: Dr.Legasov) just before Chernobyl-accident [1988.4: Dr. Legasov died & stopped MSR project]
- 1987.11 EdF decided "no SUPERPHENIX-No.2 (Na-FBR)" (President Bergougnoux)
 and invited KF. for the Th-MSR examination
- 1988.11 ORNL(Direc.Trivelpiece) proposed to KF the coop. on MSR with USSR...
- 1988.12 KF prepared "THORIMS-NES Report" at Clamart Inst., EdF,
- 1990.5 USSR-KI (Direc. Velikhov) proposed to KF the coop. on MSR devel. again.
- 1991.7 <u>USSR-Inst.Theo.Exp.Phys.(Chuvilo) invit.KF</u> coop. AMSB-study, & Sosny Sci. Cent.(Chigrinov), Minsk, too.
- 1992.6 <u>US Presi. Bush's Advisor.Sci. &Tech.(Dr.Allan Bromley)</u> encour.KF on Th-MSR devel.
- 1995.6 <u>RUSS Fed. Inst.Tech. Phys. (ITP), Snezhinsk</u>. (Direc. Acade.E. Avrorin, Dep. Sci. Direc,
 - V, Simonenko), proposed the coop. devel. of miniFUJI. and accepted by KF
- 1997.4 "<u>Intl Conf. MSR Develop.</u>", at RAND, USA with 24 MSR specialists. from Japan(5), USA(5), Russia(4), Belarus(2), India, France, Turkey, Czech & IAEA
- 1997.7 <u>Japan·USA·Russia</u> <u>Trilat.Coop</u>.MSR-Dev Meet., decid.<u>miniFUJI-site</u> in ITP,
 Snezhinsk.
- 1997.8 <u>US Presi. Clinton Advisor Sci.&Tch.(Dr.J.Gibbons)</u> promised to KF,
- Japan, USA, Russia Trilat. Coop. MSR-Dev. and Coop. with ORNL: no problem

- 1998.2 Academ.Avrorin, ITP visit Japan; Russian Govern. approved MSR Coop. plan.
- 1999.12 Three Agency Study (OECD/IEA, /NEA, IAEA) [TAS]: Intl. Devel. of 12 Nuc Pow. St., incl. FUJI.
- 2001.8 pub. Book: "Revolution in Nuclear Power-Plants" (Japanese) by KF. in success
- 2002.10. **[TAS**] Report pub.:"Innovative Nucl.Reac.Devel-Opportu. Int.Coop."
- 2003.10 Parliam.Group of Govern.Party invited KF on Th-energy policy.
- 2004.5. IAEA "Status-Rep. Innov. Small & Medium Sized Reactor Design" (2004.10. our 3rd draft was sent to IAEA), will be pub.Oct.,2006
- 2004.9 Czech & Slovakia Visit: , Rez NRI; Pilzen SKODA; Brno; Slovakia Nucl. Ene. Conf..
- 2005.8 Compreh.Rep. "New Primary Energy by Th MSR Tech." Elec.Chem.<u>73 (2005)</u> 552.
- 2005.9 R.Moir & Edward Teller: Nucl.Tech.151 (2005) 334. supporting FUJI concept.
- 2006.2 GIF-MSR Steer.Comm.Meeting, at OECD, Paris (observer: KF)
- 2006.6 "Nucl.Non-Prolif." by KF awarded <u>Prize of Excellence</u> from Nobel Peace
 Prize Winner Eisaku Sato (the former Japan. prime minister) Foundation."

- 2006.9 **SKODA-JS**(Pres. M.Fiala) invited KF to the 50 years anniversary
- 2007.1. IAEA-TECDOC-1536: "Status on Small Reactors without On-site

Refuelling" published including "FUJI concept".(p.821-856)

- 2007.8. *ICENES*, Istanbul, <u>Turkey</u>: "Road Map Realiz. Global-scale Th Breed. Fuel Cycle by Single Molt.-Fluoride Flow", 18 coauth. [Ene. Conv. & Manag., <u>49</u>(2008)p.1832-1845.]
- 2008.6. 21st Int.Conf.ECOS 2008, Poland: present. 2 papers by Prof.Erbay(Turkey) et al.
- 2008.10. Joint Int. Conf. on MS:MS08, Kobe, Japan: presented.
- 2008.10. Formal NPO: ITHMSF (Int. Thorium Molten-Salt Forum) was established.
- 2009.4. Taiwan Inst. Nuclear Eng. Research (INER) engineers visited Furukawa
- 2009.4. Adv. Nucl.Fuel Manag.(ANFM IV),Th-fuel Sec. South Carolina,USA: present 2 papers
- 2009.4. visited Venezuela, and discuss. with USA colleagues at Los Angeles.
- 2009.5. discuss with Dr. A. Bjorseth, Chairman of SCATEC, mother comp. of Thor Energy.
- 2009.6 visit Prague and Moscow for miniFUJI & FUJI development task plan
- 2010.3 present. at "Th Energy Alliance" Conf., March 29-30, 2010, Mountain View, CA, USA
- 2010.6 started the new company: International Thorium Energy & Molten-Salt Technology

Inc. (IThEMS): President K.Fukushima, Chairman K. Furukawa

 2010.9 visiting Czech: IThEMS and Czech side signed momorandum for collaboration towards the realization of a miniFUJI in practical use in a near future.

"Revolutionary Strategy for Our

Target: THORIMS-NES (Thorium Molten-Salt Nuclear Energy Synergetic System)

Dr. Kazuo FURUKAWA

(QYT00127@nifty.ne.jp)

http://www.ithems.jp/e

http://msr21.fc2web.com/English.htm

*International Thorium Energy & Molten-Salt Technology Inc. (IThEMS, Chairman)

**International Thorium Molten-Salt Forum (ITHMSF, President) October, 2010

Agenda

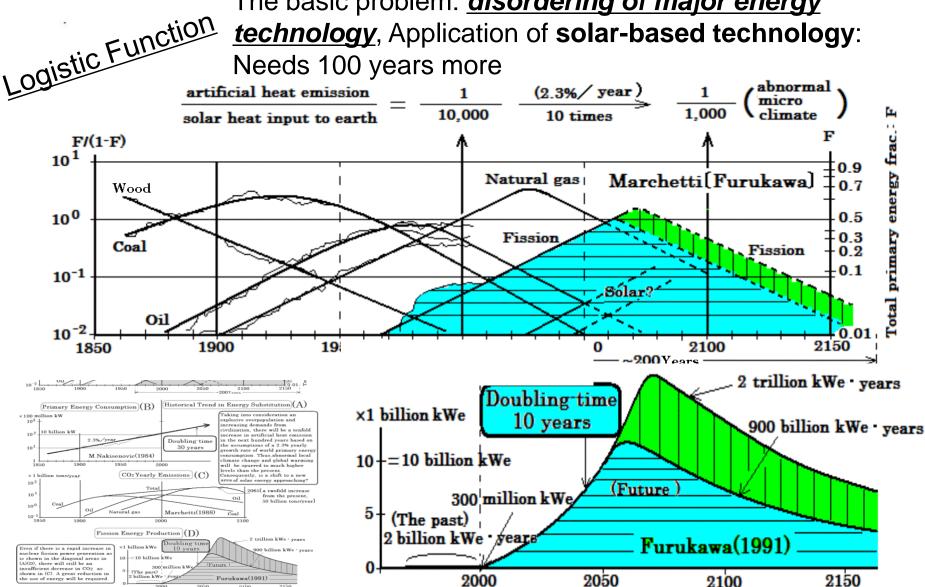
- A. <u>Basic Principle of Fission Energy Industry Technologies:</u>
 - "Nuclear Fuel-Cycle" is much more important than "Reactors"
- **B.** Selection of specific Fuel-Cycle System:
- C. Path to realize the Th-U Breeding Fuel-Cycle:
- D. <u>Development strategy for realizing the "Simplest"</u>

 Th-U Breeding Fuel-Cycle:
- **Conclusions:**

A. Basic Principle of Fission Energy Industry Technologies:

(1) "Establishment of Breeding Nuclear-Fuel Cycle" is crucial:

The doubling time (Td) for fission fuel industry growth in about 10 years (cf. the next-page Figure) for establishing the requested fission fuel breeding cycle.


-Necessary for Global Survival-

- Only require 10,000 tons of the consuming fission fuel per year for 10-TWe (10 billion kilo), with its establishment:
 - → Nuclear waste can be drastically reduced.

"Global Future Energy Prediction"

The basic problem: **disordering of major energy** technology, Application of solar-based technology:

A. <u>Basic Principle of Fission Energy</u> <u>Industry Technologies:</u>

- (2) Breeder Power Reactor system is too "utopian":
- Breeding Cycle should be achieved by a **Symbiotic system**:
- FISSION process is: <u>Energy rich</u>, but Neutron poor <u>"Fission Breeding Power Reactor" is insufficient</u>
- SPALLATION process: Energy poor, but Neutron rich
- A symbiotic system couples:

 <u>Good converter</u> of Fission Power Reactors with

 <u>Good fissile producing</u> Spallation Reactors

B. Selection of specific Fuel-Cycle System:

(1) Uranium – Plutonium (U-Pu) breeding fuel-cycle is the subsidiary technology of early stage of the development:

- **■** Disadvantages of <u>SOLID-FUELed U-Pu Breeding Fuel-Cycle</u>
 - nuclear proliferation ---plutonium
 - nuclear waste ----trans-U elements
 - possibility of severe accident (core melt-down) ---weak safety
 - economical difficulties due to:
 - "fuel-assembly fabrication & handling",
 - "complex reprocessing", "necessity of huge-size", etc.
- Huge investment in the past 60 years, but not successful in realizing an <u>effective Breeding Fuel-Cycle:</u>
- But, its contribution will remain until the middle of this century.
 - The accumulated technology has made launching the new technology easy and feasible:

- (1) Establishment of the Nuclear-Fuel Cycle (NFC) as "Chemical Engineering Devices" (1/2):
- What Dr. Eugene WIGNER predicted in 1944 was that:
 - REACTOR: Nuclear Chemical-Reaction Energy System should be "Chemical Engineering Devices"
 - Its working medium should use a "FLUID" as the nuclear fuel and as coolant
 - An ideal nuclear power reactor would be probably "the <u>molten-fluoride salt fuel reactor"</u> later developed by ORNL, USA under his successor:

 Dr. Alvin Weinberg

B. Selection of specific Fuel-Cycle System:

- (2) The Thorium Uranium (Th-U) breeding fuel-cycle is the most promising approach:
- Superiority of the "Th-U" over the "U-Pu" system is extensively recognized in these days:
- One of the superiorities:

 Almost none of "the trans-U elements" is produced:
- Weak point:
 No "natural fissile nuclide" available with this "Th−U":

 → Alternative solution available:
- The "Th-U" system should be the mainstream of the development strategy:

(1) Establishment of the Nuclear-Fuel Cycle (NFC) as "Chemical Engineering Devices" (2/2):

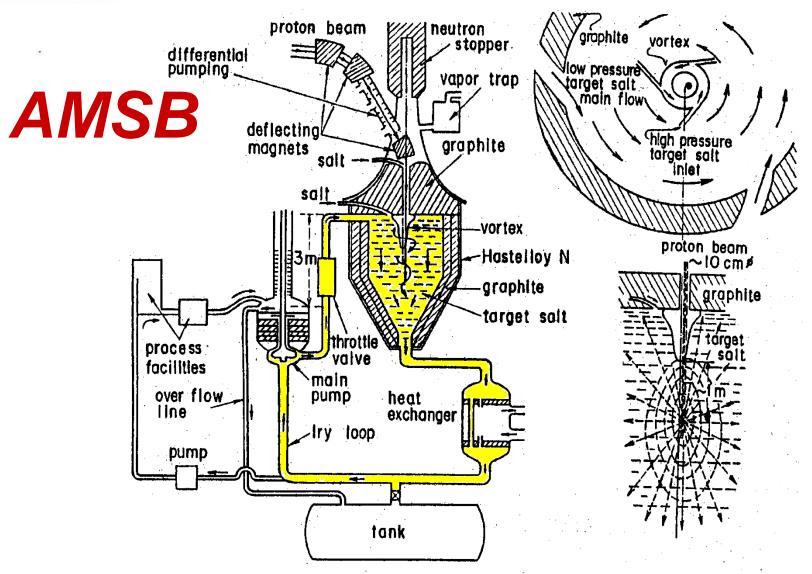
■ Thorium utilization in "SOLID-FUEL REACTORS":

High Temperature Gas-cooled Reactors (HTGR) and Light- or Heavy-Water Reactors (LWR or HWR) etc.

- Not suitable for practical "Th-U" cycle development due to the <u>strong gamma rays</u> associated with U232:
- Difficulties of Chem. Processing and Fuel Fabrication

(2) Fissionable material procurement:

- Thorium is a fertile material and has no fissile nuclide such as U235 or Pu239/241:
- Slightly enriched or denatured uranium can be used for the initial fuel:


 (Plutonium produced will be of relatively low concentration and small in amount):
- Plutonium from spent uranium solid-fuels, resulting by <u>simplified FREGAT</u> processing (no fuel-assembly and fabrication)
- Eventual elimination of the plutonium stockpiles:

- (3) Realization of Breeding Fuel-Cycle by selecting the Symbiotic system:
- The **key factors** for establishing the full scale breeding fuel-cycle:
 - → Implementing the comprehensive improvement and maintenance of the
 - "Accelerator Breeding System" (SPALLATOR)
- Successful development of the
 - "Accelerator Molten-Salt Breeder (AMSB)" invented by K.F. et al. on 1980 (cf. the next-page Figure)
 - → Solving the technical difficulties of:
 - intensive radiation-damage &
 - localized intense heat generation etc.:

Accelerator Molten-Salt Breeding Facility

D. <u>Development strategy for realizing the</u> "Simplest" Th-U Breeding Fuel-Cycle:

(1) Basic principle of new technology:

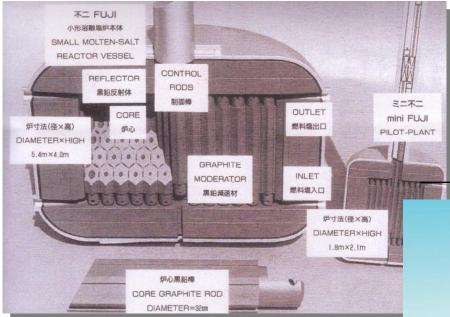
- **CANADIAN** PLAN in realizing the "Th-U Breeding Fuel-Cycle":
 - Solid-fuel high conversion-ratio "CANDU" + "Accel. Breeder" was considered by Dr. W. B.Lewis (1950-1980)
 - → Not realistic to achieve a simple breeding cycle system.

 Recent Canadian plan: "CANDU + FBR" is much worse
 - →INDIA is in a similar situation at the moment
 - THORIMS-NES concept based on Breeding Fuel Cycle by the "<u>Single Molten-Salt Liquid Phase</u>" to be implemented:

 (MSR: *FUJI*) + (Accelerator Molten-Salt Breeder: *AMSB*)

D. <u>Development strategy for realizing the</u> "Simplest" Th-U Breeding Fuel-Cycle:

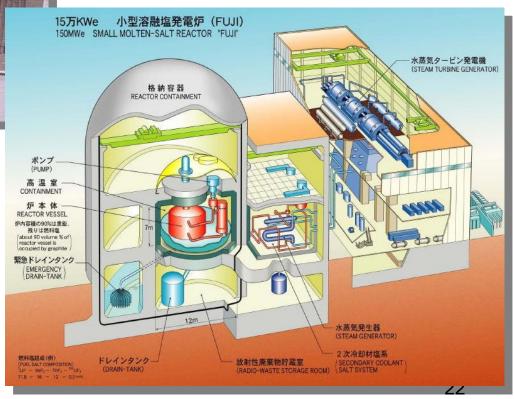
- (2) Idealistic "Thorium Molten Salt Reactor" system
 (1/2):
- Proposed Thorium-Molten Salt Reactor,


"FUJI": near breeder (cf. the next-page Figure)

- Simplified Structure, easy to operate and maintain:
 - Almost *fuel self-sustaining* ,
 - Even small power size: 150-300 MWe
 without continued chemical processing & core-graphite replacement
- Simple Reactor Vessel: Simple ambient pressure tank with no big-flange, only one control-rod and no fuel-handling:
- Factory manufactured: Small size & modular arrangement:

Excellent economical advantages (Continued)

Molten-Salt Power Reactor



FUJI

Cross-section View of **FUJI** and **miniFUJI** Reactor Vessel Models

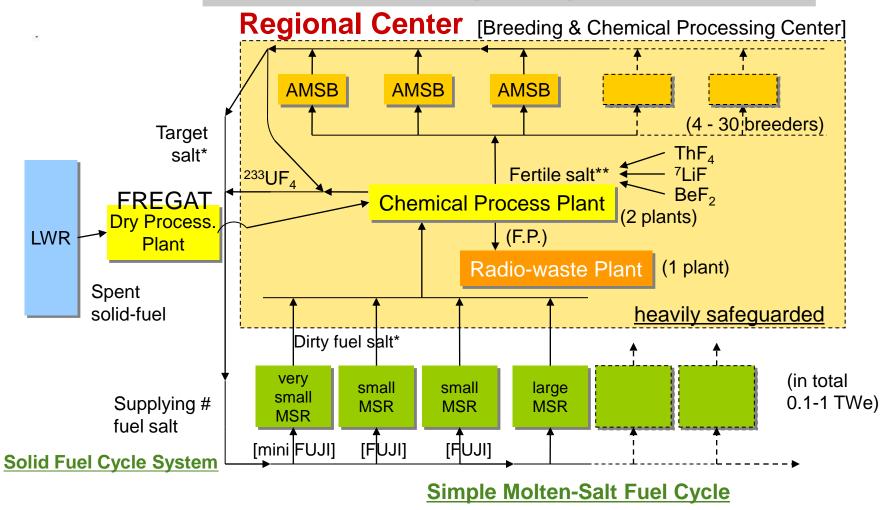
Inside: **Graphite** is only **90 % vol.**Almost **no Control-rod**.

Full View of FUJI Molten-Salt Reactor

D. <u>Development strategy for realizing the</u> "Simplest" Th-U Breeding Fuel-Cycle:

- (2) Idealistic "Thorium Molten Salt Reactor" system (2/2):
- For the 1st stage operation fuel:

Plutonium from existing warheads stockpiles and Solid-U-fuel reactors aiming at the reduction and eventual, total, elimination of plutonium


- For the 2nd stage operation fuel:

 Production of U233 for many new reactors: FUJI

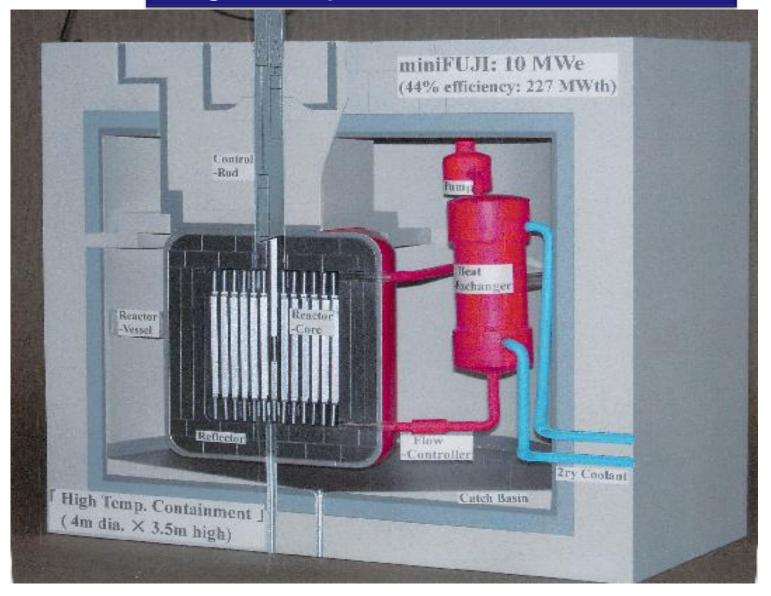
 by launching many "AMSB" Timetable: about 3 decades
- "Regional Centers": 20-30 locations in the world (cf. next Fig.)
 to handle the "chemical processing" of the spent fuel salts:
 - → "U233 producing AMSB" and "Nuclear Waste Plants":

Thorium Molten-Salt Breeding Fuel-Cycle System

(*) 7 LiF-BeF₂-ThF₄- 233 UF₄

(**) ⁷LiF-BeF₂-ThF₄

(#) target salt* + additive ²³³UF₄



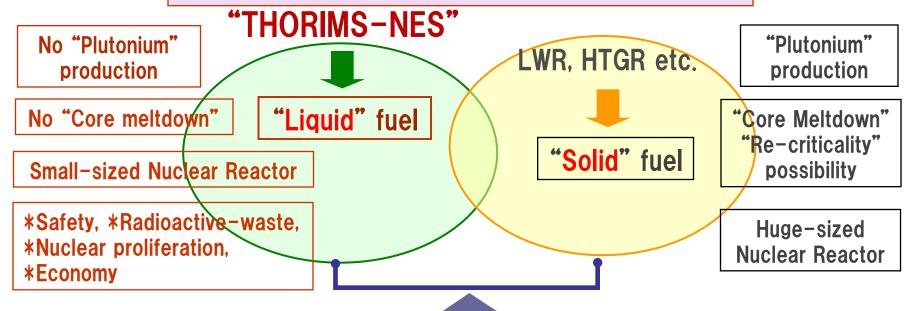
D. <u>Development strategy for realizing the</u> "Simplest" Th-U Breeding Fuel-Cycle:

- (3) THORIMS-NES is feasible in the Shortest Period with Minimum Development Cost:
- Concept based on the review of R&D results for past 70 years
- "Small-sized nuclear power station: in minimum investment by using the past excellent R&D results
 - by international cooperative partnership with private companies"
 - by the support of liquid-sodium technology experience
- MSRE operation at ORNL for 4 years:
 - equivalent to the fuel-burning for 10 years at "FUJI" already
- **■** Investment estimated:
 - \$0.3B for "miniFUJI" reactor for the next 5-6 years:
 - \$1.5B for "FUJI" reactor for the next 12 years from now:
 - \$20B for AMSB development at "Regional Centers" worldwide for 25 years (starting 10 years later) from now

Model of miniFUJI in "High Temperarure Containment"

Conclusions

- Excellent advantages of THORIMS-NES:


 Safety (No "core meltdown" accident in principle)
 - Radioactive-waste no production of trans-U elements
 - Nuclear proliferation protection: no Pu
 - Economy (simple structure and operation, etc.)
 which should result in a conclusive public acceptance
 - "The simpler is the better."
- Promising potentialities for launching by (small-fund & short-time)
 - the huge-sized new nuclear industry throughout the world.
 - Significant contribution to the realization of
 - "Co-existence & Co-prosperity Society" on earth

"Thorium Molten-Salt NuclearEnergySynergetic System-THORIMS-NES" Concept of realizing "Coexistence & Co-prosperity Society" on earth

Promising potentiality for launching the huge-sized New Nuclear Industry throughout the world.

- **Establishment of Breeding Nuclear-Fuel Cycle** is crucial:
- **■** "Breeding Power Reactor system" is too "utopian" and not effective:
- "U-Pu" Breeding Fuel-Cycle is the subsidiary technology for early stages of the development:
- **■** Realization of the most promising symbiotic "Th-U" Breeding Fuel-Cycle:

